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Abstract The concept of local shuclure in fluids is applied la a complex model fluid with 
classical translations in two dimensions and two infernal quantum states. We demonstrate the 
usefulness and efficiency of an analysis based on lacal structure parameters lhal allows us lo 
locate lhe liquid-solid Vansition density from configurations generated by standard wnslanl- 
volume simulations. Our findings are in close agreement with recent predictions from a density- 
functional treatmenl of this freezing uansition. In addition lo these methodological aspects. open 
questions concerning lhe conjectured existence of two triple points in the two-dimensional fluid 
wilh internal quantum states can be settled. 

1. Introduction 

Since the introduction of computer simulation methods, the investigation of phase transitions 
in the necessarily small finite systems is a challenging problem in statistical physics. One 
approach consists in computing thermodynamic functions as equations of state or free 
energies via thermodynamic integration. A wealth of impressive work along these lines has 
been done for simple fluids [I]. Among such methods for liquid-solid transitions we mention 
the ‘artificial-solid method‘ [Z] and the Frenkel-Ladd method or modifications thereof, see 
[3] for a recent application and further references. Another more recently exploited approach 
consists in extracting direcrly from the microscopic simulation data relevant information 
leading to the location of phase transitions. Some progress concerning the liquid-gas 
transition became possible with the inhoduction of the Gibbs-ensemble [4] method and the 
finite-size block analysis technique for off-lattice [5-71 models. However, neither method 
is ideally suited for investigating liquid-solid transitions. The Gibbs-ensemble method is 
hampered by the usual ‘particle insertion problem’ known from grand canonical simulations 
[SI of dense fluids, while on the other hand the block analysis cannot (in general) resolve 
the small density differences between liquid and solid phases [6]. 

The key idea of the present method for the location of liquid-solid hansitions consists in 
using only microscopic simulation data, i.e., confrgurations, which is similar in spirit to the 
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above methods used for liquid-gas transitions. Since we have to distinguish liquids from 
solids, there are two basic concepts that may be suited. The classification of configurations 
along the lines of Voronoi polyhedra or their dual, the Delaunay polyhedra, has already 
been widely used for the investigation of melting and nucleation, see, e.g., [9] and [IO], 
but only recently for the determination of the liquiddolid transition 1111. The idea of local 
invariants [12-171 was also mainly used to investigate in detail microscopic structures of 
fluids. Recently, one specific set of order parameters, the global bond-order parameters 
[13], was used to estimate free-energy barriers in crystal nucleation [18]. In connection 
with two-dimensional (ZD) melting [I91 and the search for the hexatic phase, an analysis of 
nearest-neighbour bond-angular susceptibilities on various length scales has been performed 
[21]. In the present paper, we use ‘fluctuating distributions’ of iocal invariants to estimate 
the location of the liquid-solid transition in a given parameter space. We will demonstrate 
that this method is extremely useful in locating liquiddolid transitions in simulations with 
constant volume. The method is not designed to yield high-precision data. However, it is 
well suited for rough investigations of liquid-solid transitions over a wide range of control 
parameters in ‘expensive’ fluid models. 

We apply our ideas to the now well studied fluid with internal quantum states, see [201, 
[6], [7] and [22]. This system was recently extensively investigated in ZD using path-integral 
Monte Carlo (PIMC) methods [23] in combination with the block analysis method [61. The 
phase diagram, as found in the simulations, includes fluid, gas, liquid and square solid phases 
combined with ferromagnetic and paramagnetic ordering of the internal quantum states. In 
order to understand the occurrence of the square solid phase, the system was investigated 
[22] with the density-functional theory (DFT) of freezing generalized to handle liquids with 
internal quantum states. This revealed the possible existence of the expected hexagonal 
solid phase in addition to the discovered square solid phase, resulting in two triple points. 
in addition, it was possible to obtain the complete phase diagram in the temperaturdensity 
plane. In the present paper, we return to simulations and investigate from this standpoint 
the liquid-hexagonal-solid transition in this complex fluid. Since simulations of such many- 
body quantum systems are very time consuming, only eficient analysis methods can be used 
with a chance of success; the mapping of the gas-liquid and gas-square-solid coexistence 
lines in 1-51 was only possible due to methods especially tailored to the problem. The 
usefulness of the analysis based on the concept of local structures for the location of the 
liquid-solid transition is demonstrated by comparing it to DFT results. 

The organization of the rest of the paper is as follows: we start by introducing our 
method to analyse the liquid-solid transition in section 2, followed by the definition of the 
model Hamiltonian in section 3. The PIMC simulations are briefly described in section 4.1, 
and the theoretical treatment using a mean-field (MF) approximation and Dm is given in 
section 4.2. We discuss our results, also with respect to similar work by other groups, in 
section 5, and close this paper in section 6 with a summary of our main results. 

A C Mirus er a1 

2. Local structure analysis 

Before going into the details, we first sketch the basic ideas behind the approach. The 
concept of local order parameters 112-171 seems to be an ideal starting point for the location 
of liquid-solid transitions based directly on configurations. Based on these quantities, our 
central idea is to decompose a given configuration into patterns of typical local structures, 
where a local structure consists, loosely speaking, of a few-atom cluster. In case of a 
2D liquid of point particles, typical clusters consist of 6 i 1 neighbours around a central 
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particle. The low-temperaturehighdensity phase, termed 'solid' from now on (see [19] for 
reviews of the 2D melting problem), consists of mainly hexagonal clusters centred around 
sixfold-coordinated particles with a certain equilibrium density of defects, i.e., vacancies 
and interstitials. This defect concentration (of typically only a few percent in the solid) 
increases dramatically in the liquid [ll], effectively leading to a sizable concentration of 
clusters centered around five- and sevenfold-coordinated particles. In addition, the relative 
angles connecting the central particle with its neighbours start to deviate from their average 
values in the solid phase. The thermnl Jisplucemenis of the particles constituting the clusters 
are taken into account as Gaussianfluctuutions, where the mean square displacement of the 
fluctuations has to be determined in the analysis and yields an estimate for the Lindemann 
parameter. Thus, if a configuration deep in the solid state is decomposed into ideal 
local structures, only fluctuations of hexagonal clusters with corresponding relative angles 
contribute significantly to the overall structure, In the liquid state, however, the defect 
clusters become important, i.e., large deviations of the relative angles occur. Contrary 
to methods based on Voronoi decompositions [9-11], only rotationally invariant angular 
features are exploited in the present appmach in the form of the local invariants. 

? 

Figure 1. Schematic picture of a seven-atom cluster around 
a aenval atom at f with definition of the angle C. 

We characterize the local structures by structural invariants [ 171. In this approach we 
describe the local order in the 2D liquid in the vicinity of an atom located at point r, see 
figure 1, by the 2D local version of the bond-order parameter [13] 

where fi, denotes spherical harmonics and the sum is over the NO neighbours of atom r; 
the pair of angles (E+, @i)  fixes the direction between the central atom and the ith neighbour 
in some space-fixed coordinate frame. In ZD the atoms lie in a plane that we chose to 
be perpendicular to the P axis of the coordinate frame, i.e.. all 0, are equal to $r, and 
@i is measured relative to some axis A. In (1). we always consider the NO = 6 nearest 
neighbours. In order to obtain a rotationally invariant expression, the axis dependence has 
to be summed over and we use [13,10,171 

Systems with hexagonal solid structure can be analysed via [17] the invariant Qf with 
I = 6, referred to as the local structure parameter; for convenience we from now on omit 
the subscript 1. In contrast to other approaches [18], the following analysis will be based 
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directly on the probability density function p(Q)  (referred to as the distribution function 
from now on) of the local structure parameter field Q(r)  itself, i.e., without defining any 
global structure parameter obtained by averaging Q(r) over all bonds in the system [ 131. 
Alternative definitions relying on ZD local structure parameters [24,19,21] could also be 
used. More details on the probabilistic formalism connected with the actual analysis of 
simulated data and especially the corresponding error estimates can be found in [15-171. 

Having defined the local structure parameters, we now consider fluctuations of the 
inviuiants. Our goal is to decompose the distribution p ( Q )  calculated from MC simulation 
into what we call the distributions for ideal local pattems rk. The natural choice r6 for a 
2D solid is the symmetric seven-atom cluster with a sixfold-coordinated central particle T ,  

i.e., the six neighbours i = 1, . . . , 6  form an ideal hexagon. Other patterns rkf6 correspond 
to non-hexagonal structures and reflect e.g., the arrangement of particles in the vicinity 
of dislocations; due to the definition of the No neighbours we only consider seven-atom 
clusters. The coordinates of the constituent particles can be calculated approximately using 
the elasticity theory formulae for displacement vectors in the vicinity of a dislocation, see 
[17]. As already discussed, we expect a ‘high concentration’ of hexagonal patterns r6 
in the solid, whereas other patterns should dominate in the lowdensity liquid. Since the 
particles and thus the invariants Q fluctuate (at non-zero temperatures), this effect has to 
be considered in the analysis. Starting from, say, the hexagonal r6 pattern, we let the six 
neighbours of the central particle fluctuate according to a Gaussian distribution 

P6(6T) = ( I / h . J j T )  exp[-(W/6;621 (3) 

where 8r denotes the displacement vector and t6 its mean amplitude; we measure ( 6  in 
units of the distance between the central atom and its neighbours in the regular structure. 
Using the definition (3), the mean fluctuation amplitude of any atom of the pattern is given 
by $/a. The resulting distribution p 6 ( ~ ,  g6) for the r6 pattem degenerates into a delta 
function for non-fluctuating patterns and smooths out as (6 is increised while the information 
about Ihe type of pattern is gradually lost. For a fixed fluctuation strength (k, we call these 
pr(Q.  t) the distributions for ideai pattems of the rk type. One can define a measure of the 
‘structural identity’ for such fluctuating patterns [15-171, but we are not going to use this 
concept here. It turns out 1171 that the distributions pk(Q,&) for seven-atom pattems fall 
into two classes. One of them consists of p6(Q, (6) alone and the other of non-hexagonal or 
‘defect’ distributions. In other words, the invariant Q distinguishes between hexagonal local 
structures and any other type of local structure. As a representative of the non-hexagonal 
distribution we use p5(Q. ( 5 )  calculated from fluctuations of adislocation pattem r5 centred 
around a fivefold coordinated atom [171. In figure 2, we present the distributions ps(Q, 45) 

and ( 6 )  for choices of ( as determined for our model fluid at the transition density 
for a temperature of T’ = 0.6 (see the following sections for details). As essential for the 
analysis, the hexagonal pattern r6 distribution peaks at a very different Q than that of the 
defect pattern r5. 

Having introduced ideal fluctuating pattems, the last step consists in decomposing the 
distribution p ( Q .  T*. p’) = p ( Q )  calculated from a simulation at statepoint (T*, p‘). The 
simplest ansatz is a linear superposition of the distributions of the hexagonal r6 and defect 
r5 patterns 

where we have three fit parameters C6. (6, and 65 (C6 + cs = 1) all depending on T’ and 
p’. The quantity C 6 ( T * .  p*)  is a measure of the ‘weight’ of the solid phase at statepoint 
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Figure 2. Distributions a(Q,&) of hexagonal r6 and 
defect Ts pauems: crosses, r6 where (6 = 0.19: sm, 
r, where c5 = 0.33. 

Figure 3. Phase diagram including paramagnetic 
fluid (PF). ferromagnetic Ruid (FF), paramagnetic gas 
(E), ferromagnetic liquid (n), fenomagnetic hexagonal 
solid (FH) and ferromagnetic square solid (n) phases. 
Spedsl p i n s  are the hicitical poini (TCP) and 
WO triple p i n e  ('PI, m). Carves are M F ~ F T  
predictions (full. fiat-order m i t i o n s ;  broken, second- 
order transitions; domd, hiple lines); circles and 
eiangles (FS coexistence densities) are block analysis 
PIMC data; squares (FH coexistence densities) are local 
smaure analysis PIMC data. For furlher details see the 
text. 

(P, p*): it goes to unity in the deep solid phase and vanishes when approaching the low- 
density regime. In other words, we can relate C6 to a 'volume fraction' of the solid phase. 
Thus, in analogy to the well known lever rule of statistical mechanics, the parameters for 
which c6 Y f should give a rough estimate of the coexistence region. Being based on 
heuristic arguments, this criterion should be considered a rule of thumb only! A much 
improved estimate for the criterion can only be obtained after a detailed quantitative study 
of the free energy along the lines of [IS] but necessarily including an analysis of associated 
finite-size effects on the distributions, which is not intended in this exploratory study. The 
other interesting fit parameter is &5(T*, p*). Since the mean fluctuation amplitude &,/a 
defines the amplitude of the thermal displacements of the particles from their regular crystal 
positions, it should be related to the usual Lindemann ratio. Armed with the parameters c6 
and b, we can analyse the liquid-solid transition of a specific model on a more quantitative 
footing. 

3. Model fluid with internal quantum states 

We model a complex fluid in ZD, which in addition to the translational degrees of freedom 
also has internal degrees of freedom. The latter can be thought of as quantum-mechanical 
moIecular degrees of freedom coupled to the translations. The mass M of the molecules 
is assumed to be large enough to allow a classical treatment of the translational degrees 
of freedom. The molecular centre of mass can take continuous values in a monolayer of 
area V = S x S. The internal quantum states are represented as simply as possible: to 
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each molecule we assign a two-level tunnelling system and introduce a distance dependent 
coupling between the molecular degrees of freedom on different particles. The resulting 
combined classicaVquantum N -particle Hamilton operator of the system reads 

A C Mitus et a1 

where pi and +i are the momentum and position in 2D of particle i (rij = Iri - rjl); 3 
and 3 are the usual Pauli spin-; matrices. The potential energy consists of a one-particle 
(two-level) part and two pair interaction terms U ( r )  and J(r) .  where U is chosen to be a 
hard disk potential for molecules with diameter R and J(r)  = J for R c r c 1.5R and 
zero elsewhere. 

These two-state molecules have an intemal Hamiltonian -&I@ and interact via a pair 
potential depending on their actual internal state; the harddisk part is the only remnant 
of the core-core interactions of the molecules. The important feature of the Hamiltonian 
(5) is that the interaction term will tend to lift particles out of their internal ground state 
corresponding to a change of their preferred magnetic state. Due to the distance dependence 
of the interaction term J ( r )  the quantum and classical dynamics are non-trivially coupled. 
Thus a coverage-induced change of the preferred intemal quantum state of the molecules is 
expected as the density is changed. Since the interaction term is short ranged, we expect, 
roughly speaking, dominance of the one-particle contributions -&&f at low densities, 
resulting in paramagnetic phases; this is found in case of the gas and low-density fluid 
phases. As the density is increased, the particles start to feel the interaction term - J & f T ,  
which induces a ferromagnetic ordering of the internal states; the solid and high-density 
fluid phases are found to be ferromagnetic. At very high temperatures, only the athermal 
hard-core contribution is expected to be relevant for phase stability. 

The part of the model’s phase diagram that is of interest in this investigation is presented 
in figure 3. The symbols are based on PlMC simulations, and the curves on a combined MF 
and Dm treatment, see section 4. More features and the experimental background of this 
particular model, which produces many of the phases found in certain molecular adsorbates 
[7], can be found in [6] and [7]. 

4. Simulations and theory 

4.1. Path-integral MC simulations and block analysis 

The PlMC formalism, see [23] for a general discussion, is most easily described by 
considering directly the partition function 

Z(B, N, V )  = A-2N- N! / drl . . /d+Nhbexp(-Bfi) (6) 

where the thermal de Broglie wavelength A results from integrating out the trivial momenta 
and B = I/ksT as usual. We use the Trotter formula to discretize the ph t ion  function Z 
in the Trotter dimension P as [U), 61 
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The effective Hamilton function Hp is defined as 

where we have introduced the constants 

A p  = [$ ~inh(,ho/P)]"~ (9) 

and 

K p  = (1128) In[coth(gmo/ZP)]. ( 1 0 )  

The exact quantum properties of the system can now be obtained as thermal averages over 
the effective classical canonical distribution of the N x P particles 

r 

if the required Trotter extrapolation P -+ 00 is carried out. Thus, the key is that an N-body 
(quantum) system could be transformed to a classical system; the price to be paid consists 
of an increase in the number of degrees of freedom, since we now have an ( N  x P)-body 
(classical) problem with P -+ 03, and the introduction of more complicated interactions. At 
this stage, the simulations can be carried out as a standard classical canonical MC simulation 
using the Boltzmann weight defined in (1 1). However, it should be noted that, due to the 
additional degrees of freedom along the Trotter direction, such PIMC simulations are much 
more demanding than simulations of the corresponding classical case. 

The liquid-gas coexistence region of the phase diagram is already known from an 
extensive finite-size block analysis PIMC study 161 of the model. The details of this 
investigation can be found in [6]; see also [SI for the original papers applying the block 
analysis to off-lattice models. For the convenience of the reader, we briefly sketch the basic 
ideas of this method. Consider a fluid in the one-phase region. i.e., well above its critical 
point. Such a situation is characterized by a number density fluctuating around the average 
density of the system. For large systems, one can approximate this by a Gaussian density 
distribution centred around the average density of the system. Well below the critical point, 
this distribution splits into two branches due to the coexistence of a low- and a high-density 
phase. Neglecting interfacial effects, this can in turn be approximated by two superimposed 
Gaussians in the density; the weights are given by the level rule, and the widths depend on 
the respective compressibilities. Near the critical point, scaling arguments can be used to 
motivate scaling fonns for this distribution function. 

The generic system used in computer simulations of fluids consists of a periodic box 
of fixed shape and box lengths containing a conserved number of particles; in the Gibbs 
ensemble 141 a skilful combination of ingredients from different statistical ensembles is used, 
which makes it different in this respect. But even in a system with constant volume one can 
measure density fluctuations if one subdivides the total system by introducing imaginary 
walls into subboxes or 'blocks' on various length scales. This is the key idea, since one 
can now measure the average number density of these blocks and actually compute the 
density distribution function. Finally, the analysis consists of fitting these distributions by 
Gaussians, which allows one to extract the coexistence densities in two phase regions. Along 
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these lines, the liquid-gas binodal of our model fluid was mapped This approach can also 
be extended to investigate gas-solid coexistence as demonstrated in [6] where the square 
solid phase of our model fluid was discovered. The generalization of the block analysis to 
the liquid-solid transition is (in general) not feasible: the practical implementation of the 
method relies on the ability to resolve the density difference between the coexisting phases, 
and in the case of generic liquid-solid coexistences this difference is simply too small for 
tractable system sizes. 

In the present study, the PIMC simulations were carried out with the same parameter set 
( J  = 1, R = 1, WO f J  = 4) as before [6,22] as a function of dimensionless temperature 
T' = (PJ)-' and density p' = R 2 N / V .  The number N of molecules was again 200 and 
the Trotter dimension P was chosen such that PjPJ Y 40. Wilh this choice of P ,  the 
Trotter limit was safely reached [6], as tested by Trotter scaling various observables and 
comparing the PIMC imaginary time&' correlation functions with these functions from a 
vinal expansion for low coverages. 

4.2. Mean-field and densipfunctional theories 

We now sketch the basic ideas of the MF theory [25,20] used to obtain the gas-liquid 
coexistence boundaries and the paramagnetic-ferromagnetic transitions [20,6]. In addition, 
it serves as a necessm liquid-state input for the D F ~  treatment for the liquid-solid transition. 
The MF treatment of our model closely follows the well known CurieWeiss theory for the 
king model [Xi] in a transverse field, with the only difference being that our spins are 
not restricted to be located on lattice sites. This is approximately modelled by a density- 
dependent coordination number [25,20] or equivalently an averaged coupling constant JO 

where as usual g ( r )  denotes the two-point correlation function for the homogeneous hard- 
disk fluid. The Helmholtz free energy of the model thus reads in the MF version 

where f d p )  is the free-energy contribution of the nonmagnetic part of the Hamiltonian, 
and within our approximation is simply the free energy of the hard-disk system at the same 
density. For high temperatures we find a continuous transition from a paramagnetic to a 
ferromagnetic fluid phase, but below the tricritical temperature T x p  the magnetic transition 
is accompanied by a (paramagnetic) Mferromagnetic) liquid transition together with 
jumps in both magnetization and density. 

The liquid-solid part of the phase diagram was obtained by combining MF theory for 
the magnetic transition with Dm for Freezing [27]. The basic idea of the Ramakrishnan- 
Youssouf approach [27] is a second-order expansion of the free-energy functional around 
its liquid state. To include the contribution of the internal quantum states, we start by 
introducing a combined classical/quantum free-energy functional [22] of the time-averaged 
number density p ( r )  and the magnetization density m ( ~ )  for the Helmholtz free energy. 
We incorporate the magnetic interaction in the sense of an MF [20] treatment in addition 
to the non-magnetic hard-disk contribution. The magnetization density is proportional to 
the number density, i.e., m(r) = m , p ( r ) ;  we measure the magnetization in the magnetic z 
direction. In the MF model the magnetic field on one panicle due to the interaction with all 
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dr'm(r-r')J(r'). other particles is approximated by the average molecular field. em (7) = 
The free-energy functional in this approximation is finally given by 

Bf[pI= B f c i b I +  5 Tm(r)tm(r) - - d r )  In{2coshls(t~(r) + f ~ $ ' ~ l t  (14) 

The Helmholtz free energies of the solid are obtained by minimization of this functional 
with respect to both P(T)  and ms. Motivated by the simulation results we also studied the 
square-lattice solid in addition to the usual hexagonal solid Further technical details, such 
as the choices of the classical contribution j3fCl[p1, the direct correlation function and the 
minimization scheme, are discussed in [22]. 

BJdr s; 

Q 
Figure 4. DisuibutiM of the hvarimts p(Q, T'. p') aS a function Of Q fOr F = 0.4 The full 
curves correspond IO fits and serve only as guides to the eye. (a) p' = 0.60: (b) p' = 0.70: 
(c) p' = 0.74: (d) p' = 0.76: (e) p* = 0.78: (0 p* = 0.80: (9) p' = 0.82: 01) p' = 0.84: (i) 
pf = 0.86: (i) 10. = 0.88. 
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5. Results and discussion 

We start by showing in figure 4 the raw data of our basic quantity, the distributions 
p ( Q .  T', p*)  of the invariants Q at T' = 0.6 for densities covering the range from the 
liquid to the solid; the fits are useful guides to the eye. These distributions are obtained 
directly from the configumions as defined in (2). The statistics was improved by averaging 
six well equilibrated and independent configurations for all densities at T' = 0.6 and 1.0, 
whereas 12 configurations were used at T* = 0.45 and 1.5. Since we extract only the local 
quantities Q defined by a few nearest neighbours around every particle, each configuration 
consisting of 200 molecules contains already many independent samples in the sense of a 
self-average. The data based on 12 configurations give smaller error bars as expected, but in 
order to improve the statistics considerably, many more configurations have to be analysed 
during the run. Many more averages are needed if one attempts to obtain more accurate 
data, but as underlined by OUT results, we have already gathered sufficient statistics with 
only six configurations in order to rdiably extract the quantities of interest. 

The distributions in figure 4 in general have a two-peak structure, which indicates the 
existence of at least two types of local order. One can clearly see a qualitative change in the 
shape of the distribution as the density is increased; the low-density regime is dominated 
by a peak at Q rr 0.4 , whereas high-density configurations have a prominent peak at the 
hexagonal value of Q Y 0.65. It is important for the analysis to note that the positions 
of the peaks do not change as the density is increased, only the relative weight of the two 
contributions is density dependent. Thus we can see qualitatively that the local structure of 
the fluid, as characterized by its bond-order parameter distribution, changes noticeably as a 
function of density. 

The next step of the analysis consists in obtaining a quantitative estimate for the 
crossover density. A rough estimate can be obtained by inspection of the distributions 
of the invariants in figure 4; it must be located somewhere in the region p* = 0.76-0.80 
at a temperature of T' = 0.6. Its quantification follows from the decomposition (4) of the 
simulated distributions p ( Q ,  T', p') into hexagonal p s ( Q ,  $6)  and non-hexagonal p5(Q. c 5 )  

distributions. This decomposition is a fit with the three free parameters $6, $5, and C6 yielding 
the relative weight of hexagonal local structures and corresponding fluctuation strength of 
the pattems. 

A C Mitus et a1 

(b) (C) 3 

P* 
+ + +  

I ,  ., 
"0.3 05 0.7 0.3 0.5 0.7 0.3 0.5 0.7 

Q 
Figure 5. Decomposition of disaibulions of Ihe invariants in fluctuating hexagonal r6 and defect 
r) pattems as a function of Q for T' = 0.6 circles. simulation data p ( Q .  T'. p'); cmsses, 
decomposed data using (4). (a) p' = 0.70, (b) p' = 0.80; (c) p* = 0.86. 
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We are now in a position to extract the relative concentration c6 of hexagonal local 
structures from the decomposition of the distributions of the invariants p( Q, T*, p') obtained 
for different state points in the (T ' ,p ' )  phase diagram into hexagonal and other local 
structures. We show such a decomposition for a density corresponding to the liquid, solid 
and crossover regimes at T' = 0.6 in figure 5. One can nicely see how the superposition 
of the pattems r6 and rs fluctuating with the optimized 66 and 55 fits the structures of 
the fluid in different regimes. The interesting contribution C6 of hexagonal local structures 
is plotted in figure 6 for the two temperatures T' = 0.6 and 0.45 as a function of the 
density: the errors bars are solely based on statistical errors of the local structure analysis. 
One can clearly see that c6 increases rapidly from a value of 0.2 (typical of a liquid) at 
p* = 0.6, to 0.8 (typical of a solid) at p' = 0.88. which we intelpret as an ongoing 
crystallization of the system upon increasing the density. Since we measure the invariant 
Q E Q6, this implies that a hexagonal solid structure exists at high densities for all the 
investigated temperatures. As motivated in section 2, we assume that the intersection of 
the data urith c6 = 0.5 gives an estimate of the density p& of equal contribution of 
hexagonal and other local structures. As presented in detail for T' = 0.6 (the curves 
for T' = 1.0 and T' = 1.5 are qualitatively similar to T* = 0.6). we extracted these 
densities for four temperatures and plot the data as squares in the phase diagram of our 
fluid, see figure 3, as obtained from MF and DFT (curves) and previous simulations (circles, 
triangles). It is rather obvious that the densities p& are good estimates of the coexistence 
region of the liquid with the hexagonal solid Having systematic errors such as, e.g., 
neglect of the non-vanishing vacancy and interstitial concentmtions of equilibrium solids 
[281 and of course finite-size effects [21], the accuracy of the proposed method should not be 
overestimated. Especially when approaching the liquid-gas coexistence line for T' = 0.45, 
the data in figure 6(b) contain a lot of scatter. probably because of large interfacial effects 
and gaseous contributions in the configurations. Nevertheless, we can estimate directly from 
the simulation how the liquid-hexagonal coexistence line reaches the liquid-gas binodal. 
This is now the demonstration by simulation that the DFT prediction of a second triple 
point (TPI in figure 3), with coexistence of paramagnetic gas, ferromagnetic liquid and 
ferromagnetic hexagonal-lattice solid, is qualitatively correct. Only the actual location of 
this triple temperature is lower. we estimate TAl 2 0.35 f 0.1 instead of T& = 0.55 from 
DFT. The triple point TP2 involving the square-lattice solid was a surprising finding of [6] 
and could already be understood on the hasis of DFT calculations, see the discussion in [22] 

5 
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and a forthcoming detailed paper. These new findings now answer all the open questions 
from [6] conceming the topology of the phase diagram of this 2D fluid with internal quantum 
states. 
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In addition, we can supply in figure 7 the data for the optimized fluctuation amplitudes 
e6 of the hexagonal patterns as a function of density for T’ = 0.6. Casting a quick glance 
at this figure, one notes that (6 decreases as the density is increased. A more careful 
inspection reveals that stays (within the mutual error bars) constant up to p& and 
only then rapidly decreases for higher densities; the behaviour of b for the other three 
temperatures is qualitatively the same. In addition, one can extract : 6 / f i  at p&, as a 
function of temperature. Ordered as ( T * , c 6 / f i ) ,  these data read (0.45,0.13), (0.6.0.14), 
(1.0,0.13), and (1.5.0.14) with an estimated ermr of roughly f0.02. The Lindemann 
parameters as obtained from the DFT calculations for the liquid-hexagonal-solid transition 
are 0.14 at T’ = 1.0 and 0.15 at T* = 0.6. This agreement again demonstrates that the 
decomposition of the overall density p ( Q ,  T*. p*) in hexagonal and defect patterns with 
different fluctuation amplitudes is justified an4  moreover, contains very useful information 
in terms of c6 and 5.5. 

Before coming to our conclusions, we want to discuss other recent approaches similar in 
spirit to OUTS. The analysis of [I I] is devoted to the order-disorder transition in the hard-disk 
system. It is also based only on configurations; in this case it is the edge-length distribution 
function of the Voronoi polygons as obtained from a tesselation of the configurations. It 
was demonstrated that the distribution of this quantity can serve to give an estimate of the 
transition parameters in the hard-disk fluid. However, no direct comparison of the obtained 
transition pressure with other results was made, so that we cannot judge the quality of the 
Voronoi method as compared to our local structure analysis. In the investigation [IS] of 
soft repulsive spheres, bond-order parameter distributions were also used, but the goal was 
to study free-energy barriers in crystal nucleation and not to locate any phase transition. 
Finally, the question of how to simulate and analyse an equilibrium solid without imposing 
any implicit constraints on the system is highly non-trivial, and is discussed in great detail 
in [28]. It is nor sufficient to simulate in N p T  or constant-stress ensembles in order to 
circumvent artificial constraints due to finite-sized systems and boundary conditions. In 
1281 a method is devised for reliably extracting thermodynamic data for equilibrium solids 
without imposing any artificial constraints due to the simulation of small systems. These 
authors introduce the ‘bicanonical ensemble’ and sophisticated methcds for the analysis of 
necessarily a set of bicanonical simulations. The proposed method is very time consuming 
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since for each statepoint in the phase diagram several independent simulations and the 
evaluation of the free energy are required. Thus, though very accurate and promising, this 
approach is currently not practicable for investigations of phase transitions in many-body 
quantum systems as in our case. 

6. Summary and conclusions 

In the present investigation we combined the path-integral MC method for the simulation of 
many-body quantum systems with analysis techniques based on the properties of local real- 
space structures. Our model fluid, a zD hard-disk fluid with internal quantum states, which is 
at the same time a prototype model for adsorbed molecular monolayers, is computationally 
very demanding, and only efficient analysis methods enable us to extract information on 
phase boundaries in this system. Such a method is devised by the local structure analysis 
based on ‘fluctuating distributions’ of local invariants. Using only a few configurations it 
is nevertheless passible to obtain reliable estimates of the liquid-hexagonal-solid transition 
density as a function of temperature. The numerical results compare favourably with a recent 
DFT calculation of the phase diagram. This demonstrates the usefulness and efficiency of 
the local structure analysis for the direct location of the liquid-solid coexistence line in 
simulations without having to rely on computations of thermodynamic functions. Again, 
we stress the point that the present study has a mainly exploratory character, and a detailed 
analysis of free energies based on much better statistics, larger systems and fmite-size 
extrapolations is required in order to extract more accurate data. However, the local structure 
analysis method as presented in this study is tailored to a rough estimation of liquid-solid 
coexistence densities over a wide range of control parameters for computationally demanding 
fluid models. 

In addition to these methodological aspects, we are now able to follow the liquid- 
hexagonal-solid coexistence line until it reaches the gas-liquid bmodal. This shows by 
simulation that hvo triple points exist in the ZD harddisk fluid with intemal quantum states 
(associated with the square solid at very low temperatures and the usual hexagonal solid) 
as recently conjectured from a DFT treatment of this fluid. Thus, the topology of the phase 
diagram of this ZD fluid with intemal quantum states can now be considered to be well 
understood. 
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